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SUMMARY 
The effects of compressibility on a radial laminar wall jet are 

investigated. On the assumption that the coefficient of viscosity 
is proportional to the temperature, it is shown that a similarity 
solution for the velocity distribution exists, which is expressible 
directly in terms of the corresponding solution for an incom- 
pressible wall jet. For arbitrary Prandtl number the energy 
equation is studied in detail and solutions are obtained for a variety 
of temperature conditions. 

1. INTRODUCTION 
The term ‘ wall jet ’ was introduced by Glauert (1956) to describe the 

flow due to a jet of air spreading out over a plane surface, either radially or 
in two dimensions. With compressibility neglected, Glauert studied the 
velocity distribution in a wall jet for both laminar and fully turbulent flow, 
and for laminar flow found an exact solution of the boundary-layer equations 
in the form of a similarity solution. This solution should be asymptotically 
approached whatever the initial form of the jet near the axis. 

The present paper considers the influence of compressibility on a 
laminar radial wall jet. The effects of viscous dissipation, wall temperature 
conditions and of the initial temperature of the fluid in the wall jet are 
analysed. Some of the results of this study have been briefly referred to 
by Glauert (1957). 

Glauert (1956) proved that, in an incompressible wall jet, the ‘flux of 
exterior momentum flux ’ is constant ; this forms the basic starting point 
of his theory. I t  is here shown how this result can be generalized to 
compressible flow, the flux of exterior momentum flux being constant 
when the viscosity is proportional to the temperature. 

In the boundary-layer equations of momentum, continuity and energy, 
the stream function may be conveniently chosen as independent variable 
in place of the coordinate normal to the wall. This transformation was 
first used for incompressible flow by von Mises (1927) and later by 
von KhrmAn &. Tsien (1938) for compressible flow. Under the simplifying 
assumption that the viscosity is proportional to the temperature, it is possible 
to solve the momentum and energy equations independently, the momentum 
equation becoming identical with the corresponding equation for 
incompressible flow, and the same solution being applicable. The 
interpretation of the results in terms of geometrical coordinates differs, 
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and is fully investigated. In  particular it is shown that the skin friction 
has the same value as in the corresponding incompressible flow. 

Still retaining the simple viscosity-temperature law, but imposing no 
restrictions on the Prandtl number, solutions of the energy equation are 
obtained. These solutions describe the effects of viscous heating, wall 
temperature and initial jet temperature on the velocity and temperature 
profiles, both when there is no heat transfer across the wall and when the 
wall is maintained at a constant temperature. If the assumption that the 
Prandtl number is unity is made, the well-known Crocco relation between 
the temperature and the velocity provides a particular solution of the energy 
equation, being a special form of the solutions obtained in the more general 
analysis. When a more accurate viscosity-temperature law is assumed it 
is possible to develop solutions of the momentum and energy equations 
in series form, though the details are not set out here. 

No attempt is 
made in this paper to extend Glauert’s analysis for turbulent flow, since 
it is not easy to  predict how the eddy viscosity and diffusivity will vary with 
temperature. However, the general nature of the changes in the velocity 
profiles in the laminar case may perhaps serve as an indication of the sort 
of modifications to be expected for turbulent compressible flow. 

Glauert (1956) shows that there is a close analogy between wall jets in 
two and three dimensions, the same velocity profile occurring in each case. 
Similarly all the results obtained here, with simple changes, become 
applicable to compressible plane wall jets. 

In practice, wall jets will almost always be turbulent. 

2. EQUATIONS OF MOTION 

On the boundary-layer approximation, the momentum, continuity and 
energy equations governing a compressible, laminar, radial wall jet flowing 
over a plane wall are 

pu- +pv-=- p- 

a a 
- (pxu) + - (pxv) = 0, 
ax aY 

au ax ay au ay a (  3, 

The boundary conditions are u = v = 0 at y = 0 ; u + 0, T -+ T, as y -+ co, 
together with a condition on T at y = 0, x = 0. 

Here x and y denote distances along and normal to the wall, x being 
measured from the jet axis, u and v the corresponding velocity components, 
p the density, T the temperature and p the coefficient of viscosity. The 
specific heat at constant pressure C, and the Prandtl number u are assumed 
constant. On the 
boundary-layer approximation the pressure is uniform everywhere and 
hence the equation of state implies that 

The subscript 00 is used to denote values at y = co. 

p T  = const. (2.4) 
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For an incompressible wall jet, Glauert established an integral relation 
which he interpreted as saying that the flux of exterior momentum flux is 
constant. We can follow the same procedure as Glauert to obtain a 
corresponding result for compressible flow. Multiply equation (2.1) by x 
and integrate with respect to y between the limits y and co, using the 
condition that u + 0 as y --f co ; then, since 

using (2.2), we have 
au (pxu2) dy - pxvu + xp - = 0. a - m  

3 i  i, aY 
Multiplying (2.5) by pxu and integrating with respect to y between the 
limits 0 and co, we have 

From the continuity equation, the second term of (2.6) is 

Now at y = 0, u = 2) = 0, therefore equation (2.6) reduces to 

For incompressible flow, where p and p are constants, the second term 
of (2.7) is zero. For compressible flow it will vanish only in certain 
circumstances. In  particular it will do so if p p  is a function of the velocity u, 
or ,is constant. In  these cases (2.7) reduces to 

03 ju pxu { lm pxu2 dy 
Y 

where the constant F is the flux of exterior momentum flux. It may be 
noted, that as defined here, the constant F differs by a factor p2 from the 
definition used by Glauert (1956). 

The continuity equation (2.2) implies the existence of a stream function # 
such that 

pxu = -, 
a* aY 1 

Following von Mises, we now take x and $ as the independent variables, 
F.M. 2 R  
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and hence write 

(2.10) 

Substituting (2.10) into the momentum and energy equations (2.1) and 
(2.3) we have 

aT x2 a 

On introducing dimensionless variables by writing 

(2.11) 

(2.12) 

(2.13) T = T, T, 
u = us, 
P = P m P ,  

x = v, qu, 
p = PmP, 

where U is an arbitrary constant velocity and v the kinematic viscosity, 
we find that equations (2.11) and (2.12) become 

(2.14) 

(2.15) 

Since p T  is constant by (2.4) ,we have, if p cc T,  p p  = const. = p m p m  or 

p i i  = 1. (2.16) 

Using (2.16) we see that equations (2.14) and (2.15) become 

(2.17) 

(2.18) 

3. VELOCITY DISTRIBUTION 

The density p ,  and hence the temperature 2’) does not appear explicitly 
in the momentum equation (2.17), and so (2.17) may be solved independently 
of the energy equation (2.18). Moreover a particular solution of equation 
(2.17) must be the similarity solution, obtained by Glauert (1956)) of the 
corresponding incompressible equation, that is 

= iY(17)3-3/2, (3.1) 
where f(7) = $2-314 (3.2) 

(3.3) 

and f (7) satisfies the equation 
f” +ff” + 2 p  = 0, 

f( a) = 1. f(0) = f ’ ( O )  = 0, 



ESfect of compressibility on a wall j e t  619 

The boundary condition at the outer edge of the wall jet only requires 
f'( a) = 0, but writing f( co) = 1 involves no loss of generality, since the 
velocity U in (2.13) remains arbitrary. Glauert obtained the solution of 
equation (3.3) in the form 

More recently, Glauert (1957) has shown that 

d = U ' ( ' 1 ) ( 3 3 + l 3 ) - - 1 / 2 ,  (3.5) 
where f(7) = J ; ( 3 3 + l 3 ) - - 1 / 4 ,  (3.6) 
is also a solution of the momentum equation (2.17), E being an arbitrary 
constant length. Since the velocity given by equation (3.5) remains finite 
as 3 + 0, this solution may have some significance even near the axis. We 
shall make use of this latter solution of the momentum equation. 

Although the velocity functionf'('1) is the same in the incompressible 
and compressible problems, the interpretation of the variable q differs. 
Connection of '1 with the physical variable _y can be made as follows. Using 
(2.9) and (2.13) 

Substituting p m / p  = 2' and introducing ti and q according to equations (3.5) 
and (3.6) we obtain, from equation (3.7) 

2' dq. 
v, x 4  

Thus, in order to obtain the velocity in terms of the physical variable y ,  
we see that the temperature distribution throughout the wall jet must be 
known. The 
skin friction is independent of the temperature distribution when p cc T,  
since it is given by 

The temperature distribution will be the subject of $4. 

(3.9) 

which has the same value as for incompressible flow. 

momentum flux F defined by equation (2.8). 
of (3.5) and (3.8), we obtain 

The arbitrary velocity U may be expressed in terms of the flux of exterior 
Substituting the values 

(3.10). 

Proceeding exactly as in the corresponding incompressible case, if the wall 
jet is the result of a free jet impinging on a flat plate, a rough estimate of 
the magnitude of F may be obtained from the conditions in the free jet as 

F = 4 x (typical velocity) x (mass flow/radian)2. (3.11) 
The constant length I can be estimated by equating the maximum velocity 
at x = 0, given by (3.5), to the maximum velocity in the impinging jet. 

2 R 2  
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Alternatively, if the wall jet is formed by fluid flowing out radially, 
with uniform velocity U, and temperature To, from beneath a circular disc 
of radius a and at a distance h from the wall, then equation (2.8) may be 
evaluated at x = a to give 

(3.12) 

In this case I can be estimated by requiring the maximum velocity at x = a, 
given by (3.5), to be U,. 

4. TEMPERATURE DISTRIBUTION 

In  order to determine the temperature distribution, the energy equation 
(2.3) must be solved for T. When the Prandtl number u is unity, a particular 
solution of (2.3) is the Crocco relation 

where A and B are constants. Since u --f 0 as y -+ co, A must have the 
value T,. The value of B depends on the degree of heating in the initial 
jet. I n  particular the solution with B = 0 will be appropriate for a jet 
issuing from a reservoir of fluid maintained at the same temperature, T,, 
as the fluid outside the wall jet. In  this case the heat transfer across the 
wall is seen to be zero. If we suppose the wall jet to be formed by fluid 
flowing out uniformly from beneath a circular disc as in 9 3, then equation 
(4.1) can be evaluated at x = a, giving 

where y is the ratio of the specific heats and M, = Uo/a,, a, being the 
velocity of sound outside the wall jet. 

We shall now seek solutions of the energy equation for arbitrary Prandtl 
number. The simple solutions, for Prandtl number unity, given by (4.1) 
occur as special cases of these more general solutions. 

When the assumption p cc T is made, the energy equation takes the 
form given in equation (2.18), a linear equation for T. Since c ( 8 , ~ )  is 
known, it is convenient to change the independent variables again from 
(a,$) to (z ,~ ) ,  where 7 is defined by equation (3.6). To do this we have 
the transformation formulae 

Substituting for 4 from equation (3.5) the final form of the energy equation 
(2.3) is 
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This equation (4.4) is the form in which we shall study the energy equation. 
A boundary condition at the wall, 7 = 0, must be specified. We shall 
consider only the two cases of a perfectly conducting wall, over which the 
temperature is maintained at a constant value, and of a thermally insulated 
wall, at which the heat transfer is zero. The outer boundary condition 
is T = 1. This is related 
to the temperature of the initial jet. When the solution for T has been 
found, the correspondence between 7 and the physical variable y may be 
obtained from equation (3.8). 

A particular integral of equation (4.4) may be found in the form 

Equation (4.4) also has an infinity of complementary functions of the form 

where %,& satisfies the equation 

By adding to the particular integral (4.5) suitable complementary functions 
of the type (4.6), the temperature conditions we wish to  be able to prescribe 
can be satisfied. 

The effects of viscous heating, wall temperature and initial heating 
will be discussed separately, and the solutions appropriate for both the 
required conditions at 7 = 0 will be determined. 

Viscous heating 
Let us first examine the temperature distribution due to viscous heating 

in the wall jet. As we have seen, we require a solution of equation (4.4) in 
the form (4.5), where, if we choose 

A condition at f = 0 must also be specified. 

T = 1 +Co(~3++3)-'0,(q).  (4.5 1 

T% = c,(23 + 231-a e,(7), (4.6) 

e;+u(fe; + 4 q e , )  = 0. (4.7) 

9 u2 c - - - -  
O -  16 C,T,' 

the equation to be satisfied by Oo(y) is 

eg + a(j-e; + 4ye0) = up, (4.9 1 
where 

(4.10) and either e,(O) = 0 for constant wall temperatureT,, 
or Ol(0) = 0 for a thermally insulated wall. 
When u = 1, Oo(q) = +.f'2(q) satisfies all the conditions (4.10), a result 
indicated by (4.1). For arbitrary cr, no solution of equation (4.9) has been 
found in closed terms. The equation has been integrated numerically for 
u = 0.72, the value appropriate for air. 

When the wall jet is flowing over a thermally insulated wall, the wall 
temperature is, from equations (4.5) and (4.8) 

O,( m) = 0 

(4.11) 

The numerical integration gave Oo(0) = 0.0060. 
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When the wall is maintained at a constant temperature T,, the rate at 
which heat is transferred across the wall, per unit area, is 

aT 
Qw = - (h-) ay y = o  

= -A, 

(4.12) 

(4.13) 

using equations (3.8), (4.5) and (4.8), where h is the thermal conductivity. 
The numerical integration gave 8;(0) = 0.0036. 

If ( T -  Tm)/Tm > (Mach number)2 at all points in the wall jet, then 
the effects of viscous heating may be neglected and the particular integral 
(4.5) may be taken as T = 1. 

Wall heating 
To describe the effects on the temperature distribution of maintaining 

the wall at a constant temperature T ,  # T,, we require a complementary 
function (4.6) with ct = 0. Thus 

Tl = V w -  1>4(r>,  (4.14) 
where 

The required solution of equation (4.7) is immediately obtained as 

(4.15) 

As shown by Glauert (19.56)) f = g2, where g' = $(l -g3), and hence 

and equation (4.16) may be written 
1 

O1 = I (1 -g3)"-l d g / l l  (1 -g3)"-l dg. 
Ll 0 

(4.18) 

When u = 1 this reduces to 
o1 = (1 -g). (4.19) 

When (r # 1, 8, may be represented as an incomplete beta function by 
writing (1 -g3) = t in equation (4.18), which then becomes 

0, = f tg--l( 1 - t)-2/3 dt tU--l( 1 - t )v2 '3  dt 
0 

= &(a, Q)IB(U, -5). (4.20) 
The contribution to the rate at which heat is transferred across the wall, 

per unit area, is given by 
v, x4 114 q w = - -  ( Tw-Tm)(U(x3+P)3)  (4.21) 

from equations (3.8), (4.12) and (4.14). 
in terms of F functions, we find that Ol(0) = -0.2861. 

Expressing the beta function 
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Initial heating 
When the jet is heated initially, we require another complementary 

function of the form (4.6), 
T, = C2(23+Z3)-a8,(77) (4.22) 

where 8,(7) satisfies equation (4.7). The boundary conditions are 

e2( co) = 0 (4.23) 

and either 8,(0) = 0 for constant wall temperature, (4.24) 

or OL(0) = 0 for a thermally insulated wall. (4.25) 

The determination of a is an eigenvalue problem. We shall consider 
first the case of a thermally insulated wall. Integrating equation (4.7) 
with respect to 7 between the limits 0 and 7, and using (3.3) and (4.25) 
we have 

(4.26) 

On letting 7 -+ co, equation (4.26) becomes, from (4.23), 

(4a-i)  Impe2 dq = 0. (4.27) 

Unless the integral in (4.27) is zero, which on physical grounds is unlikely, 
this shows that a = B. With this value of a, equation (4.7) may be 
integrated in closed terms, using the result (4.17), to give 

8, = (1 -g3y. (4.28) 
It follows that the contribution to the wall temperature is 

T22w = C,(23+13)--1'4. (4.29) 
The value of the constant C,, which depends on the initial conditions in the 
jet, is discussed later. 

For a wall maintained at constant temperature, it may be verified that 
the solution of (4.7) satisfying the boundary conditions (4.23) and (4.24) 
is. given by 

0 

(4.30) 

8, = g(i-g3y. (4.31) 
When a = 1, these equations become a = 8, 8, = gf', in accord with the 
term Bu in equation (4.1). The contribution to the rate at which heat 
is transferred across the wall, per unit area, is given by 

from equations (3.8), (4.12) and (4.22), where, from (4.31), 8;(0) = 6. 
The 

maximum values of O2 are 1 in equation (4.28), and 0.4740 in equation (4.3 l),  
when cr = 0.72. Hence, by requiring the maximum temperature at 2 = 0 

An estimate of the constant C, may be obtained as follows. 
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(or 5 = d when the jet flows from beneath a circular disc) to be the excess 
of total temperature at this point in the physical flow, the value of C, may 
be roughly determined. 

Since the equation (4.4) is linear, we may construct a solution which 
is any linear combination of the solutions obtained above, and thus we are 
able to  deal with a wall jet of arbitrary Mach number, wall temperature 
and initial heating. When the wall is maintained at constant temperature 
we require (4.5), (4.14) and (4.22), the total rate at which heat is transferred 
across the wall, per unit area, being given by a combination of (4.13), 
(4.21) and (4.32). For a thermally insulated wall (4.5) and (4.22) are the 
appropriate solutions, the wall temperature being given by a combination 
of (4.11) and (4.29). 

5. RESULTS 
The results obtained in $ 3  and $ 4 are presented in figures 1-5. Figure 1 

shows the velocity function f’(7) whilst figures 2-5 show the temperature 
distribution across the jet and the resulting dependence of the geometrical 
distance y on 7 for all the cases considered above. This dependence of y 
on 7 is given directly by equation (3.8) when the temperature distribution 
is known. Since the velocity u is a function of the mass flux $, a decrease 

9 

Figure 1. The velocity functionf’(77). 

of p (corresponding to an increase of T )  causes a physical broadening of 
the wall jet, and an increase of p causes a narrowing. The broadening or 
narrowing occurs most where IT- T,I is greatest. Since, in general, the 
temperature distribution across the wall jet changes as the jet develops, 
it follows that even for our similarity solution the geometrical form of the 
velocity profile is not independent of x, as it is in the corresponding 
incompressible flow. 
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The effect of viscous heating is shown in figure 2 where the temperature 
distributions across the wall jet, for a thermally insulated wall and for a 
wall maintained at constant temperature T,, are given from equation (4.5). 
The simple Crocco relation for u = 1, given by equation (4.1) with B = 0, 
is included for comparison. In this case the total energy in the wall jet 
is constant, so the effect of a decrease in velocity is exactly balanced by an 

Figure 2. The temperature distribution due to viscous heating; 
thermally insulated wall, 

Crocco solution for u = 1. 
-_-_ wall maintained at constant temperature T,, -. -.-._ 

increase in temperature. When the wall is maintained at a temperature T, 
there is no heat transfer across the wall and hence both conditions at the 
wall are satisfied together. For u = 0-72 this energy balance is not 
maintained, and a solution for each of the wall conditions is required; 
qualitatively, however, the results are similar to  the case u = 1. Figure 3 
shows how the wall jet is narrowed in the region of higher velocity, in 
comparison with the profile at low Mach number. The Mach number M 
is here defined as the ratio of the maximum velocity across the wall jet 
to the velocity of sound outside the wall jet. 
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When the wall is maintained at a constant temperature T ,  # T,, the 
contributions to the temperature distribution and to the variation of y 
with r )  are as shown in figure 4. These results were obtained by numerically 
integrating equation (4.20) for the value u = 0.72. As we might expect, 
the temperature increment is greatest near the wall, gradually falling to 
zero with increasing distance from the wall. 

7 
0 1 2 3 4 5 6 
A-. I I I I I I 

- 0.2 

- 0.4 

T 

-0.448 

-0.522 

-0.554 

Figure 3. The variation of y with 7 due to viscous heating; 
thermally insulated wall, 

----- wall maintained at constant temperature T,,  
-.-.-.- Crocco solution for u = 1. 

Figure 5 depicts the contribution to the temperature distribution and 
to the variation of y with 9 when heat is added initially to the jet, for the two 
cases of a thermally insulated wall and a perfectly conducting wall. For a 
thermally insulated wall the effects of the added heat are similar to those 
shown in figure 4, though the variation with distance from the axis is 
different. For a perfectly conducting wall, the effects of the added heat 
are mainly confined to the faster moving regions of the wall jet. 

As we have seen in $4, when a hot wall jet flows at high speeds over a 
heated wall, the temperature distribution can be obtained by taking a suitable 
linear combination of the distributions that have been considered above. 
Similarly, we see from equation (3.8) that to obtain the total variation of y 
with r )  we need the same combination of the appropriate distributions shown 
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- 2.161 1.0 r 

c- 
V! 

*-.o 
\O - 1.0 

7 4 5 6 2 3 1 0 
rl 

Figure 4. Contributions to the temperature distribution (6, - - - -), and to 

the variation of y with 7 ( J: 8, d7 ), when the wall is maintained at  

constant temperature T, # T,.  

? 2 3 4 5 6 7 
7) 

Figure 5. Contributions to the temperature distribution (e2/8,,,,) and to the 

variation of y with 7 ( 1; 82/82max d ~ ) ,  when heat is added to the jet initially; 

, 
9 

for a thermally insulated wall respectively, 
and for constant wall temperature respectively. 

-.-.-.- 
- . . . - . . . - - - - - 



628 N .  Riley 

in figures 3-5, the total increment in y being the sum of the increments of y 
in the separate distributions. As the distance from the axis of the jet 
increases, the Mach number decreases and the added heat is diffused away 
until their effects on the temperature eventually become negligible. We 
see from equation (4.5) that the effects of viscous heating, which fall off like 
(x3 + P - l ,  decrease faster than the effects of added heat which, from (4.22), 
behave like (x3 + P - ~ ,  where tc = 0.25 for a thermally insulated wall, and 
a = 0-548 for a perfectly conducting wall when (T = 0.72. However, the 
effect of a wall temperature T ,  # T, does not decay with increasing x. 
As a result the form of the velocity profile changes as the wall jet develops, 
and only when the effects of viscous heating and added heat have become 
negligible is geometrical similarity achieved, the final velocity profile being 
the incompressible one unless the wall is maintained at a temperature 
different from T,. 

The author is indebted to Mr M. B. Glauert for suggesting this problem 
and for his encouragement at all times, also to the Department of Scientific 
and Industrial Research for a maintenance grant whilst this work was being 
carried out. 
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